

Tetrahedron Letters 41 (2000) 3899-3901

TETRAHEDRON LETTERS

A facile synthesis of 7-amino-3-desacetoxycephalosporanic acid derivatives by indium-mediated reduction of 3-iodomethylcephems in aqueous media

Hyungsun Chae, Sangwon Cho, Gyochang Keum, Soon Bang Kang, Ae Nim Pae and Youseung Kim *

Biochemicals Research Center, Korea Institute of Science and Technology, Cheongryang P.O. Box 131, Seoul 130-650, South Korea

Received 31 January 2000; revised 6 March 2000; accepted 24 March 2000

Abstract

An efficient reductive conversion of 3-iodomethylcephalosporin and 3-acetoxymethylcephalosporin derivatives mediated by indium into the corresponding 3-methylcephems and 3-methylenecephams in moderate to good yields has been developed in an aqueous system. 3-Methylenecephams are converted into the corresponding 3-methylcephems under previously reported basic conditions quantitatively. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: cephalosporin; halogens and compounds; indium and compounds; dehalogenation; water, reactions in.

3-Methylcephem (2) is a key intermediate for the preparation of novel oral cephem antibiotics such as cephalexin,¹ cephradine,² cephadroxil,³ cefetamet pivoxil,⁴ etc. Several methods have been known for the synthesis of these compounds: isomerization of 3-methylenecephams under basic conditions,⁵ hydrogenolysis of 7-ACA derivatives,⁶ electrochemical reduction of cephalosporanic acids⁷ and ring expansion of penicillin sulfoxides.^{8–10} Herein we wish to report a new and convenient synthesis of 7-amino-3-desacetoxycephem derivatives by the reduction of 3-iodomethylcephem with indium in aqueous media (Scheme 1). Although many indium mediated organic transformation reactions have been reported,^{11–14} there have been relatively few reports¹⁵ on the use of indium metal in dehalogenation reactions.

Thus treatment of iodomethylcephems 1 (entries a–c, Table 1), prepared from commercially available 3-chloromethylcephems 1 (X=Cl) by the known method,^{16,17} with 2 equimolar amounts of indium powder in a 1:1 mixture of H₂O and THF at room temperature for 2 h gave a 1:1.2 mixture of 2 and 3 in 60–74% yields. With 3-acetoxymethylcephems (entries d–h) synthesized from 7-ACA,¹⁷ the compounds were reacted with 200 M% of KI¹⁸ then dehalogenated with 2 equimolar amounts of indium in situ in a 1:1 mixture of H₂O and THF at 40–60°C to produce a mixture of 2 and 3 in 71–79% yields.

^{*} Corresponding author. Tel: +82 2 958 5138; fax: +82 2 958 5189; e-mail: yosekim@kist.re.kr (Y. Kim)

^{0040-4039/00/}\$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved. *PII:* S0040-4039(00)00512-8

Scheme 1.

The crude mixture products were treated without purification with 120 M% of trimethylsilyl chloride in the presence of pyridine for 24 h at room temperature¹⁹ to yield the compound 2 as a sole product as shown in Table 1. This reaction is particularly attractive since 7-ACA (1h) can be transformed into 7-ADCA (2h) without protection of the amine and carboxylic acid functional groups of 7-ACA. The compound **3h** is transformed into **2h** quantitatively using *N*-trimethylsilylacetamide and triethylamine.²⁰ Although a variety of reaction conditions using other metals such as zinc or tin were explored, no dehalogenation of cephems was observed except zinc/ammonium chloride conditions²¹ which gave 3exomethylenecephams 3a exclusively in poor yield (15%). A typical procedure is as follows. To a solution of 7-amino-3-acetoxymethyl carboxylic acid (100 mg, 0.367 mmol) in 3 ml of THF:H₂O (1:1), 200 M% of indium powder (-100 mesh, 0.085 g) and KI (0.060 g, 200 M%) were added successively. The reaction mixture was heated at 60°C for 4 h, cooled to room temperature, and then 1 ml of 1N HCl and 2 ml of CH₃CN were added and filtered off the indium residue. The filtrate was neutralized by dilute aqueous NaHCO₃ solution and the precipitate was dried under vacuum. The crude mixture was dissolved in 5 ml of CH₃CN and reacted with *N*-trimethylsilylacetamide (144 mg, 1.10 mmol) for 0.5 h. Triethylamine (0.3 ml, 0.004 mmol) was added to the clear solution and the reaction mixture was stirred for 3 h followed by addition of 3 ml of MeOH. The solution was acidified with 0.1N HCl to pH 3.6 to precipitate 62 mg (78%) of 2h.

Entry	Х	R^1	R ²	Temp. (℃)	Time (hrs)	Yield of (2 + 3) (%)	Ratio of (2/3)	Total Yield(2) (%)
а	Iţ	PhCH ₂ CO-	PMB	r.t.	2	74	1:1.2	73
b	Ι	PhCO-	PMB	r.t.	2	63	1:1.2	62
c	Ι	PhOCH ₂ CO-	PMB	r.t.	2	60	1:1.2	58
d	OAc‡	PhCH ₂ CO-	Н	50	3	71	1:1.3	70
e	OAc	PhCH ₂ CO-	PMB	45	3	75	1:1.3	73
f	OAc	PhCH ₂ CO-	DPM	45	3	79	1.3 : 1	76
g	OAc	PhCO-	Н	50	3	70	1:1.3	65
h	OAc	Н	Н	60	4	79	1:1.5	[§] 78

Table 1

[†] 2.0 equimolar amounts of In were used. [‡] 2.0 equimolar amounts of In and KI were used.

 $^{\$}$ TMSA/TEA conditions were used. PMB = *p*-methoxybenzyl, DPM = diphenylmethyl

In conclusion we could demonstrate that indium can dehalogenate 3-iodomethylcephems in aqueous media and extend the scope of indium utility in organic synthesis. Further studies on the use of indium in aqueous media are in progress.

Acknowledgements

This work was fully supported by the Korea Institute of Science & Technology and the Ministry of Science & Technology.

References

- 1. Ryan, C. W.; Simon, R. L.; Heyningen, E. M. J. Med. Chem. 1969, 12, 310-313.
- 2. Dolfini, J. E.; Applegate, H. E.; Bach, G.; Basch, H.; Bernstein, J.; Schwatz, J.; Weisenborn, F. L. J. Med. Chem. 1969, 14, 117–119.
- Dunn, G. L.; Hoover, J. R. E.; Berges, D. A.; Taggart, J. J.; Davis, L. D.; Dietz, E. M.; Jakas, D. R.; Yim, N.; Actor, P.; Uri, J. V.; Weisbach, J. A. J. Antibiotics 1976, 29, 65–80.
- 4. Ochiai, M.; Morimoto, A.; Matsushita, Y. DE 2715385, 1977; Chem. Abstr. 1977, 88, 37820.
- 5. Mobashery, S.; Johnston, M. J. Org. Chem. 1986, 51, 4723-4726.
- 6. Stedman, R. J.; Swered, K.; Hoover, J. R. E. J. Med. Chem. 1964, 7, 117-119.
- 7. Torii, S.; Tanaka, H.; Ohshima, T.; Sasaoka, M. Bull. Chem. Soc. Jpn. 1986, 59, 3975–3976.
- Morin, R. B.; Jackson, B. G.; Mueller, R. A.; Lavagnino, E. R.; Scanlon, W. B.; Andrews, S. L. J. Am. Chem. Soc. 1963, 86, 1896–1897.
- Morin, R. B.; Jackson, B. G.; Mueller, R. A.; Lavagnino, E. R.; Scanlon, W. B.; Andrews, S. L. J. Am. Chem. Soc. 1969, 27, 1401–1407.
- 10. Chauvette, R. R.; Pennington, P. A.; Ryan, C. W.; Cooper, R. D. G.; Jose, F. L.; Wright, I. G.; Heyningen, E. M. V.; Huffman, G. W. J. Org. Chem. 1971, 36, 1259–1267.
- 11. Hashmi, A. S. K. J. Prakt. Chem. 1998, 340, 84-89.
- 12. Cintas, P. Synlett 1995, 1087-1096.
- 13. Lim, H. J.; Keum, G.; Kang, S. B.; Chung, B. Y.; Kim, Y. Tetrahedron Lett. 1998, 39, 4367-4368.
- 14. Lim, H. J.; Keum, G.; Kang, S. B.; Chung, B. Y.; Kim, Y. Tetrahedron Lett. 1999, 40, 1547–1550.
- 15. Araki, S.; Shimizu, T.; Johar, P. S.; Jin, S.; Butsugan, Y. J. Org. Chem. 1991, 56, 2538–2541.
- 16. Sugiyama, I.; Komatsu, Y.; Yamauchi, H. J. Antibiot. 1992, 45, 103-112.
- 17. Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis; Wiley: New York, 1991.
- 18. Miyake, A.; Yoshimura, Y.; Yamaoka, M. J. Antibiot. 1992, 45, 709-720.
- 19. Ochiai, M.; Aki, O.; Morimoto, A.; Okada, T.; Shinozaki, K.; Asahi, Y. Tetrahedron Lett. 1972, 23, 2341-2344.
- 20. Chauvette, R. R.; Pennington, P. A. J. Org. Chem. 1973, 38, 2994-2999.
- 21. Ono, A.; Fusimoto, A.; Ueno, M. Synth. Commun. 1986, 16, 653-657.